
	
	
	
This	 is	 an	 unofficial	 update/changes	 to	 NIST	 Special	 Publication	 800-‐81-‐2.	 	 The	
Special	 Publication	 was	 released	 while	 the	 Internet	 community	 is	 still	 in	 the	 process	
on	 developing	 best	 common	 practices	 and	 improving	 the	 security	 of	 DNSSEC.	 	 These	
changes	 to	 not	 alter	 the	 main	 checklist	 items	 in	 the	 guide	 only	 refine	 the	 text	 to	 keep	
the	 document	 up	 to	 date	 with	 respects	 to	 ongoing	 work	 from	 the	 Internet	
community.	
	
This	 document	 will	 be	 updated	 on	 an	 irregular	 basis	 as	 new	 material	 is	 produced,	
best	 common	 practices	 are	 refined,	 and	 operators	 gain	 more	 experience	 with	
DNSSEC.	 	 This	 document	 will	 remain	 “unofficial”	 in	 that	 it	 is	 not	 part	 of	 the	 official	
Special	 Publication	 errata	 process	 for	 now.	 	 An	 official	 version	 may	 be	 published	 in	
the	 future.	
	
In	 the	 text	 below,	 the	 text	 that	 appears	 in	 the	 NIST	 SP	 80-‐81-‐2	 guide	 is	 marked	 in	
blue,	 changes	 in	 black,	 and	 any	 text	 that	 appears	 in	 italics	 describes	 the	 reasoning	
behind	 the	 change	 or	 addition	 if	 necessary.	 	 	
	
	
2.1 What is the Domain Name System (DNS)?

The Internet is the world’s largest computing network, with more than 580 million users.
From the perspective of a user, each node or resource on this network is identified by a
unique name: the domain name. Some examples of Internet resources are:

• Web servers—for accessing Web sites

• Mail servers—for delivering e-mail messages

• Application servers—for accessing software systems and databases remotely. ���

From the perspective of network equipment (e.g., routers) that routes communication
packets across the Internet, however, the unique resource identifier is the Internet
Protocol (IPv4 or IPv6) address, represented as a series of four numbers separated by dots
(e.g., 123.67.43.254 is an IPv4 address). To access Internet resources by user-friendly
domain names rather than these IP addresses, users need a system that translates these
domain names to IP addresses and back. This translation is the primary task of an engine
called the Domain Name System (DNS). ���

Users access an Internet resource (e.g., a Web server) through the corresponding client or

Special Publication 800-81-2
Unofficial Errata
Version 1.0
4/21/2014

user program (e.g., a Web browser) by typing the domain name. To contact the Web
server and retrieve the appropriate Web page, the browser needs the corresponding IP
address. It calls DNS to provide this information. This function of mapping domain
names to IP addresses is called name resolution. The protocol that DNS uses to perform
the name resolution function is called the DNS protocol. ���

The DNS function described above includes the following building blocks. First, DNS
should have a data repository to store the domain names and their associated IP
addresses. Because the number of domain names is large, scalability and performance
considerations dictate that it should be distributed. The domain names may even need to
be replicated to provide fault tolerance. Second, there should be software that manages
this repository and provides the name resolution function. These two functions (managing
the domain names repository and providing name resolution service) are provided by the
primary DNS component, the name server. There are many categories of name servers,
distinguished by type of data served and functions performed. To access the services
provided by a DNS name server on behalf of user programs, there is another component
of DNS called the resolver. There are two primary categories of resolvers
(caching/recursive/resolving name server and stub resolver),1 distinguished by
functionality. The communication protocol; the various DNS components; the policies
governing the configuration of these components; and procedures for creation, storage,
and usage of domain names constitute the DNS infrastructure

	
7.2.5 Dedicated Name Server Instance for Each Function

Only	 the	 example	 configuration	 code	
	

options {
 recursion no;
 minimal-response yes;
 additional-from-auth no;
 additional-from-cache no;
 };
	
The other options help authoritative server operations.	 	 minimal-response	 configures
the server to only put RRsets in the Authoritative and Additional section of a DNS reply
when needed, otherwise no RRsets are included. This saves space in a response as well
as reduces the work done by the server.	 	 additional-from-auth	 and	 additional-
from-cache	 restricts the server as to where it gets RRsets to put in the Authoritative and
Additional sections when required. These options configure the server to not include data
that may be in other authoritative zones served by the server or any cached data in a DNS
response.	 	 Data in a DNS response will only include authoritative data from the queried
zone.

8.1.1.1 Restricting Recursive Queries (a special case under DNS

Query/Response)

Only	 the	 example	 configuration	 code	
	
The server-wide option would be to restrict all queries to the list of clients and only those
queries form clients that request recursion:

options {
allow-query { internal_hosts; };
- or –
allow-recursion { internal_hosts; };
match-recursive-only yes;

 };

8.2.4 Instructing Name Servers to Use Keys in All Transactions

The command to instruct the server to use the key in all transactions (DNS
query/response, zone transfer, dynamic update, etc.) is as follows:

 server 192.249.249.1 {
 keys { ns1-ns2.example.com.; };
 };

The same statement can be used as an entry in an acl statement as well:

acl key_acl {
 key ns1-ns2.example.com.;

};
	
The	 example	 is	 missing	 the	 key	 statement	 word.	
	
	
8.2.6 Securing Zone Transfers using TSIG

Only	 the	 example	 configuration	 code	
	

zone “example.com” {
 type master;
 file “zonedb.example.com”;
 allow-transfer { key ns1-ns2.example.com.; };
 };
	
In	 the	 original	 example,	 there	 were	 curly	 brackets	 around	 the	 key	 name	 in	 the	 allow-‐
transfer	 statement.	 	 They	 should	 not	 have	 been	 there.	
	
	

8.2.9 Configuring Fine-Grained Dynamic Update Restrictions Using
TSIG/SIG(0) Keys

	
The allow-update substatement specifies dynamic update restrictions based on the
originators of dynamic update requests (a specific set of hosts identified by IP address or
holding a TSIG/SIG(0) key) but not the contents of the zone records. To specify dynamic
update access (grant or deny) restrictions based on a combination of domain/subdomain
names and RR types (A, MX, NS, etc.), BIND 9 and later versions provide the update-
policy substatement within the zone statement. The update-policy substatement bases
these restrictions on the TSIG/SIG(0) key. In other words, the update-policy statement
specifies which TSIG/SIG(0) keys (or holders of keys) are allowed to perform dynamic
updates on which domains/subdomains and RR types within that domain/subdomain. In
the text below, either TSIG or SIG(0) keys could be used, but TSIG is the most common
method as it has the easiest setup and will be used in the text.

9.3 Generation of Public Key-Private Key Pair (DNSSEC-OP1)

Final paragraph:

The use of RSA in DNSSEC is approved until the year 2015 within the US Federal
Government. Its successor, Elliptic Curve Cryptography (ECC), is now specified in the
DNSSEC [RFC6605] and already present in major cryptographic libraries. USG DNS
administrators should plan to migrate to the use of ECDSA (or similar) when it becomes
available in DNSSEC components. ECC has an advantage of having the same perceived
strength as RSA with a smaller key size. This means that the ZSK can be the same size as
the KSK and have a longer cryptoperiod than a 1024 bit RSA ZSK.

10.1 Choosing Parameter Values in SOA RR

• Expire Value. The expire value is the length of time a secondary server should
consider the zone information valid if it can no longer reach the primary server to
refresh. This field allows secondary servers to continue to operate until network
disruptions are resolved. This value depends on the frequency of changes to the
zone and the reliability of the connection between name servers. When the zone is
signed, the expire value should be the same as the lowest signature expiration
value in the zone. This is to avoid having name servers serving a copy of the zone
with expired signatures. It should be a multiple of the refresh value and possibly
set to as long as 2 to 4 weeks, or the value of the (lowest) signature expiration
value.

	

